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The dependence of the universality class on the statistical weight of unrestricted 
random paths is explicitly shown both for deterministic and statistical fractals 
such as the incipient infinite percolation cluster. Equally weighted paths (ideal 
chain) and kinetically generated paths (random walks) belong, in general, to 
different universality classes. For deterministic fractals exact renormalization 
group techniques are used. Asymptotic behaviors for the end-to-end distance 
ranging from power to logarithmic (localization) laws are observed for the ideal 
chain. In all these cases, random walks in the presence of nonperfect traps are 
shown to be in the same universality class of the ideal chain. Logarithmic 
behavior is reflected in .~'ngular renormalization group recursions. For the disor- 
dered case, numerical transfer matrix techniques are exploited on percolation 
clusters in two and three dimensions. The two-point correlation function scales 
with critical exponents not obeying standard scaling relations. The distribution 
of the number of chains and the number of chains returning to the starting point 
are found to be well approximated by a log-normal distribution. The log- 
moment of the number of chains is found to have an essential type of singularity 
consistent with the log-normal distribution. A non-self-averaging behavior is 
argued to occur on the basis of the results. 

KEY WORDS: Disordered systems; random walks; ideal polymers; fractals; 
percolation clusters; renormalization group. 

1. INTRODUCTION 

Stochas t i c  p rocesses  have  a very wide  field of  app l i ca t ions ,  r an g i n g  f rom 

bio logy  to  e c o n o m i c s J  ~) In phys ics  the in teres t  is a lso b ro ad ,  f rom sol id-  

s ta te  phys ics  c)~ to h igh -ene rgy  t heo ry  ~2~ to  the physics  of  po lymers ,  t3"4~ 
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The problem of diffusion in disordered media is one of the most inter- 
esting for practical applications. Due to its complexity, only simple models 
have been investigated both analytically and numerically, ts~ These models 
of random walks, however, have been for many years paradigm enabling us 
to grasp many of the essential features of the physics involved. 

Very recently c7 9) it has been pointed out that the critical properties of 
the ideal chain are different from the random walk whenever the environ- 
ment is not translationally invariant. 

An ideal chain (IC) is a simple model for a polymer in solution in 
situations when the excluded-volume effect is negligible. It is of great 
theoretical interest also because it is known that the self-avoidance does 
not play any role above the critical dimension and because of its mapping 
with the model of the random walk in the presence of random (perfect) 
traps, which mimics, e.g., the physics of magnetic and optical excitations in 
the presence of defects/t~ A further reason to study this model is the lack 
of understanding of the case in the presence of excluded volume. I)~) 

In an IC a walk is generated on a lattice by giving equal weight to the 
steps independently of the coordination number of the particular site. In 
the literature (see, e.g., ref. 6) two other models of a random walk (RW) on 
a disordered lattice are commonly discussed: the blind ant, where the walker 
tries to jump to one of the nearest-neighbor sites with equal probability, 
but if one of the sites is not available, the ant remains in the present posi- 
tion; and the myopic ant, which instead always jumps with probability 
corresponding to the inverse of the local coordination number. The ideal 
chain can be thought of as the case of a blind ant which dies whenever it 
tries to jump into a nonavailable site, provided that the statistics is taken 
only for the surviving walks (see Section 2). 

Despite their differences, the blind and myopic ants have been 
shown ~)2~ to give equivalent asymptotic behavior for the net displacement 
in any lattice. This is not the case, however, for the IC. The main difference, 
besides the difference in the statistical weights given to each random path, 
is clearly that the IC is not a growth process (which never dies). This is 
also reflected in the spectral properties of the transition matrix. 4 

It is worthwhile to mention that we will study the situation where a 
walk can live only on the incipient infinite cluster, which is different from 
the case when such a restriction does not occur. The latter has been studied 
in the literature using (mainly but not only) field-theoretic techniques] tS~ 
which, however, cannot be applied to the present problem. Also the simpler 
case when the walk is directed has been considered, tt6) 

On fully occupied (hyper)cubic lattices, where all the sites are available 

4 For the random walk see ref. 13; for the ideal chain see ref. 14. 
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and have the same coordination number, the ideal chain and both the ants 
clearly coincide. The same happens, apart from a trivial rescaling of time, for 
a periodic lattice with nonuniform coordination numbers (see Appendix C). 

The first example where the ants and IC show different behavior is a 
deterministic self-similar structure (exact fractal), where the coordination 
numbers can be a (finite) integer set (see, e.g., ref. 17). A previous analysis ~7~ 
on some such structures showed that the critical exponents of the end-to-end 
distance and the susceptibility are different for the cases of the IC and the 
RW. The IC behavior of the end-to-end distance, however, was found to be 
strongly dependent on the particular structure of the lattice. When the sites 
with highest coordination formed an infinitely connected path, the exponent 
v,. of the end-to-end distance RN"~ N "  was larger than the counterpart v,. 
of the RW. However, when this was not the case, a slower diffusion, such 
as R ,--exp[(log N) l/'-] or R ,-~ (log N) q' (ff > 0) was found. 

A second example is a statistical fractal such as the percolation cluster 
on a square or cubic lattice at the percolation threshold, where we have 
shown ~s~ that the critical exponents are different for the IC and RW. Indeed 
we find a very pathological type of diffusion for the IC on each single con- 
figuration, taking place in the form of extended tails between regions in 
which the chain spends a lot of time. After a quenched average, however, 
a usual power law is recovered, but with a value v > 1/2 for the exponent 
of the end-to-end distance (superdiffusion), which is rather surprising. The 
distribution of the end-to-end distance is found to have a stretched- 
exponential form for large values of the argument, with an exponent b not 
compatible with a scaling relation 6 = ( 1 -  v)-1, which holds for the self- 
avoiding walk on a fully occupied lattice, ~81 and was conjectured to hold 
true also for random walks on disordered lattices. ~9~ 

The entropic behavior is also investigated. In the deterministic cases 
the susceptibility X~ ( k c - k )  -~' is found (where k is the variable conjugate 
to N) for the ideal chain to range from a value 7c = 1 (which is the value 
for the random walk on any lattice, due to the conservation of the prob- 
ability) to a different value. In the statistical fractal, on the other hand, the 
situation is quite different. The distribution of the number of N-step chains 
starting from the same point Xo, C,,o(N), is found to have a log-normal 
distribution whose variance grows faster than the mean value (which we 
call weak non-self-averaging). This feature is particularly important in 
relationship to the moments of the distribution, as will be discussed. 

The aim of the present work is to recall some previous results ~7-91 in 
a unified framework, and to present some new relevant results on the same 
subject. 

The paper is organized as follows. After a definition of the general 
model in Section 2, the renormalization group (RG) approach to the deter- 

822/75/3-4-21 
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ministic fractals is reviewed in Section 3. Then the numerical work on a 
statistical fractal (square and simple cubic lattice at the percolation 
threshold) is carried out, and the physical meaning of the results is discussed 
in Section 4. Section 5 is dedicated to the conclusions, and some technical 
details are given in the appendices. 

2. R A N D O M  PATHS AND M A P P I N G  INTO A 
GAUSSlAN MODEL 

We will begin by recalling the simplest case of the random walk (RW) 
and of the ideal chain (IC) on a hypercubic lattice and after that 
generalizations to generic structures will be considered. 

2.1. Ordered Lattice 

A d-dimensional (hyper)cubic lattice with lattice spacing equal to 1 is 
defined by an orthonormal basis {~} such that ~, .~,.=6~ ..... /~, v=  1 ..... d. 
Then a lattice point x e 7/d will be indentified by a sequence of integers 
{x,,}~= ,....,d. The master equation describing a RW is 

Px0.x(N+ 1) =1- ~ P~o.,(N) (2.1) 
Z y(x) 

where P,,o.,,(N) is the probability of finding a walker at position x after N 
steps, given that it started at Xo, and z = 2d is the coordination number of 
the lattice. The notation y(x) means that the sum is restricted to the nearest 
neighbors of x. 

A standard procedure to solve Eq. (2.1) is to introduce the generating 
function (discrete Laplace transform) 

+oc l 

G~~ ~ z(l +~o) N+~ P"~ (2.2) 
N = O  

where the factor 1/z has been introduced for future convenience. Then (2.1) 
and the initial condition P~0,x(0)= 6~0,~ yields 

r ~ G,,o.y(co)+6,,o.,, (2.3) 
y(x) 

where ctx = z ( t  +co). 
Similarly, the IC is defined through the number of N step chains 

C,,o,,,(N ) with extrema at Xo and x, which obeys the recursion equation 

Cxo.,(N+ 1)= ~ C,o.y(N } (2.4) 
y(x) 
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with initial condition C,,o.,,(N=O)=6,,o,,,. The generating function for 
C,0,~(N), analogous to (2.2), 

r ~ kUCxo.,(N)= ~ k l'''i (2.5) 
N = 0  w:Pw = { x 0 , x }  

where Iwl is the number of steps associated with the walk w and Ow is its 
boundary, satisfies an equation of the form (2.3) with c~ = 1/k. This implies 
that the two problems are equivalent to each other with the correspondence 

P ,o.,( N) = C *~ N) (2.6a) 
Z N 

1 
k - - -  (2.6b) 

z(1 +o~) 

kGxo.~(k) = axo.~(r (2.6c) 

Clearly k has the interpretation of a fugacity per step for the IC where the 
trajectories are all equally weighted. Criticality is reached in the limit 
~o---, 0 +, i.e., k--,k,-, k,.= 1/z. When k>k,. then Cxo,~ is infinite. 

A very convenient way of treating both models is to consider a 
Gaussian model for a scalar free-field theory with the Hamiltonian 

H( {ok }) = �89 ~ ~bx(1 - K)x,,~by (2.7) 
x . y  

where 

{~ if I x - y [ = l  (2.8) 
(g)x'Y = otherwise 

is the standard hopping matrix. 
The partition function is then 

Z({h})=f  @~b exp [ -  H({~b } ) + ~ h~b~] 
x 

: [ d e t ( 1 - K ) ]  ' / 2 e x P I � 8 9  h , , ( l -K)~hy]  (2.9) 
x , y  

where ~ b = I - I x  d~k,,/(2n) ~/2 and hx are the external fields introduced to 
calculate the various correlation functions by deriving Eq. (2.9) with 
respect to the h's. 
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Then it is immediate to see that the two-point correlation function 

3 2 log Z 
(~bx0~bx) ~ - ~  0-~y i,, = 0 = (1 - K)xo!x (2.10) 

coincides with (~x0.x(k) defined in Eq. (2.5). Indeed Eq. (2.10) can be 
explicitly evaluated by means of a yon Neumann expansion: 

(r = ~ (KN)~o.~ 
N = O  

+ ~  N - -  1 

= E  kN E FI 
N = 0  { X l , . . . , X N -  1 } N ' = 0  

= ~ C,o.x(N)k u (2.11) 
N = 0  

which coincides with Eq. (2.5). Note that for k>k,. the kernel 1 - K  is no 
longer positive definite. 

The generating function Z for all walls with a fixed extremum is given 
by 

z(k)=~ Gxo.,(k)=(l-zk)-'=z-'(k,.-k)-;' (2.12) 
x 

where ~=  1. ;~ plays a role similar to the susceptibility for magnetic 
systems) 3-4> 

To conclude this simple case, we recall the relation between the 
canonical ensemble (defined by N) and the grand-canonical ensemble 
(defined by the fugacity k). 

The average number of steps for a walk w is given by 

(iwl) Z,,.lwikl"'l ~ k--k~ vk,. (2.13) 
5Z,,. ki,. t = k  log z(k) k,.-k 

One can thus pass from the canonical critical limit (N--, ~ )  to the grand- 
canonical limit (k--, k,) with the replacement 

f t k , . - k ~  - t , ~ .  " for IC 

N ~o9-1 for RW 
(2.14) 

2.2. Disordered Lattice 

Let us now consider the more complex case of a disordered lattice 
where the walks or chains are allowed to move only on a certain subset of 
occupied sites of an otherwise order lattice. 
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The general master equation for a random walk with nearest-neighbor 
hopping is 

Pxo.x(N+ 1)=Pxo.x(N)+ ~ [w, , ,Pxo,y(N)-wy,~P~o. , (N)]  (2.15) 
y(x) 

where Wx.y is the probability to jump from y to x and it is different from 
zero only if x and y are occupied sites. 

Two typical models are the blind ant Wx, y = 1/z and the myopic ant 
Wx.y = l/Zy, where zx is the number of the nearest neighbors of x and z is 
the full coordination number of the lattice, t6'7~ The IC keeps the same form 
as before since each walk is equally weighted. The only difference from the 
case on the hypercubic lattice is that the sum in Eq. (2.4) is restricted only 
to the occupied sites. Figure 1 illustrates the difference of these three 
models in terms of the hopping probability. 

The blind ant and the IC with the identification (2.6a) can be cast in 
the following compact form (imperfect blind ant): 

( z - z  X) 1 
Pxo,x(N+ l ) = q  , P,,o,, ,(N)+- ~ Pxo.y(N) (2.16) 

- ~ y(x) 

where q = 0, 1 for the ideal chain and the blind ant, respectively. 
The parameter q [e (0, 1 )] has a clear physical meaning in terms of 

random walks. The imperfect blind ant has a probability q to survive and 
remain in the same position when it does not jump into one of the allowed 
sites. In the q # 1 case the averages are concerned only with the surviving 
ants, i.e., normalized weights Pxo.x(N)/~x Px0.x(N) will be used. Thus the 
IC corresponds to the limiting case where the ant dies when it jumps to an 
unoccupied sites, which plays the role of a perfect trap (see ref. 10 and 
reference therein). 

0 

t t~ 
t/3 1/3 

0 - - -  0 - " -  0 

• 

O O 

0 ~ 0 ~ 0  0 ~ 0 ~ 0  

X • 

MYOPIC ANT BLIND ANT IDEAL CHAIN 

Fig. 1. Comparison of myopic ant, blind ant, and ideal chain in a situation where there are, 
in two dimensions, three sites available ((3) and one not available ( x ). 



676 Giacometti et  al.  

Since in all the considered cases w,,,y 
the generating function 

+ ~  1 
G*~ ~ ( l+oo)u+ 'P*~  

N = O  

we find that Eq. (2.15) becomes 

a~G.0,.(oo)= ~ G.o..(oo)+6.o.. 
y ( x )  

with 

=- Wy depends only on y, defining 

(2.17) 

(2.18) 

O~ x 
~zx( 1 + co) myopic ant (2.19) 

=[z[oo+G/z+(1-q) (1  -zx /z )]  imperfect blind ant 

The IC case is obtained from Eq. (2.19) for q = 0  and it gives again 
Eq. (2.6b) for the step fugacity. 

The Gaussian model giving Gx0,x=(~b.0~b.) has the following 
Hamiltonian: 

H({~b}) ,{h})= �89  - y" ~ x ~ y - ~ h , , ~ , ,  (2.20) 
x ( x . y )  x 

and the sums are over occupied sites. This Hamiltonian is the same as 
in Eq. (2.7), upon a simple redefinition of the fields, and after we add a 
coupling with some external fields {h}'s in order to calculate the various 
correlation functions. 

The conservation of probability holds, of course, only in the case of 
the myopic and blind ants, i.e., 

~" Pxo,x(N) = 1 (VN) (2 .21)  
x 

From Eqs. (2.21) and (2.17), one immediately has the susceptibility 

,~ = y~ G.,o..(oo) ~ oo ' (2.22) 
x 

for the blind ant, implying that the critical value of oo is 0 (i.e., infinite-time 
limit). The same asymptotic behavior (2.22) holds also for the myopic ant: 
indeed, since w x = 1/zx is bounded by 1/z from below and by 1 from above, 
one has 

(zoo) I <...~ zxGxo.x(oo)<...oo-I (2.23) 
x 
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On the contrary,  for the IC the critical value k,. of the step fugacity k is not 
known a priori and in general one assumes 

X=(~ Cxo.x(k))o~(k,.-k)-;' (2.24) 

where ~, is a critical exponent.  In Eq. (2.24) the identification (2.6b), (2.6c) 
has been used and ( . ) o  indicates the average over the starting points Xo 
[no t  necessary in Eq. (2.22)!]. If  Eq. (2.24) holds, then from Eq. (2.5) it is 
easily verified that 

in the large-N limit (this follows from a Tauber ian  theorem~176 Equations 
(2.22) and (2.24) also yield ), = 1 for r andom walks on any structure (dis- 
ordered or not). 

In Section 4.2 we will encounter  a case in which the singularity is of 
an essential type, that  is, we have, instead of (2.25), 

(~ C,o,,(N))o~k,TU exp(-aN~) (2.26) 

with 0 < t/, < 1 and a > 0. A saddle point approximat ion  then gives 

Im z(k) ~ exp( - l k , . -  kl)-*/l~ - ~'~ (2.27) 

for k--* k,., which has the form of an essential singularity, s 
The asymptot ic  behavior  of the end-to-end distance is defined as 

( R  2 ) = Z"~ G"~ - x~ (2.28a) 

~ o  -2 '"  for the ants (RW) 
(2.28b) % ~(k,.- k) - 2'" for the IC 

which with the correspondence (2.14) can be rewritten in terms of the walk 
length N. 

It is well known that  for the hypercubic lattice Itl k c =  1/2 and for any 
translationally invariant lattice v,.= v , .=  1/2 and ~,= 1. For  any lattice, 
disordered or not," both  myopic  and blind and have the same asymptot ic  
behavior,  ~2) i.e., the same v,,. This is the reason we used only one exponent  

5 Similar types of singularities were found for branched polymers in ref. 21. 
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in (2.28b) for the RW. It is evident that in a translationally invariant 
lattice where the coordination number zx is a periodic function, the IC and 
the RW must have the same asymptotic behavior. This is discussed in 
Appendix C. 

3. RENORMALIZATION GROUP FOR DETERMINISTIC CASE 

Our aim is now to investigate the effect of a non-translationally- 
invariant lattice on the critical behavior for the models described in the 
previous section. We will start with some deterministic fractals where the 
breaking of the translational invariance of the lattice comes from the 
particular topology of the hierarchical structure considered, but which are 
nevertheless very handy for grasping the main features of interest. Some of 
the results of this section appeared in ref. 7. 

3.1. The T-Fractal  

The first example we will consider is the T-fractal. Figure 2 shows the 
first two steps Tt and T2 of the iterative construction of the lattice. Clearly 
its fractal dimension t~7~ is d = l o g  3/log 2. This example is simple enough 
for a description of the general procedure, and contains some of the essen- 
tial features of more complicated cases. 

We start from the usual partition function 

Z({h}) = f  ~ b  e -n~l~l'lhl~ (3.1) 

where H({~b}, {h}) is the Hamiltonian defined in (2.20). 
We can now pass from the stage T, to the stage T,,_ ~ by integrating 

on a suitable set of fast variables {~bf}, Iz2~ so that 

e-H'l{O}'{h'll=const . f  .~r e -  HI Ics'~'/' {J'~ ~1 ~ = r (3.2) 

where {~b s} are the slow variables and ( is the wave function renormaliza- 
tion which will be determined by fixing, e.g., to 1 the coefficient of the 
second sum in Eq. (2.20), i.e., the hopping term. 

The overall result is that Z is unchanged. Since there are only two 
types of coordination, the RG procedure will involve only two parameters, 
i.e., % = ~ j ,  0c 3 corresponding to zx= 1, 3, respectively. Using the well- 
known result of the Gaussian integrals, namely 

f ~ e-~TM~/2 + ~TV_ 1 e~rM_,j/2 (3.3) 
(det M)t/,_ 
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0 

o I 

(a) 

I tll 
J 

(c) 

Fig. 2. 

(b) 

lterative construction of ((a) the T-fractal, (b) the blob-link model, and (c) the 
Sierpinski gasket with generator 3. 
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(the factor 2n has been absorbed in the definition of the measure)  valid 
for any positive-definite real and symmetric  matrix M, one can easily see 
that the minimal subset of variables acting as fast variables is identified 
by circles in Fig. 2. This will rescale the unit length by a factor 2. 
Equat ion (3.2) will then lead to the Hamil tonian  H '  of the same form as 
H with renormalized parameters  ct x = ct_. given by the recursion relations 

~] =~1~3 - 2  

-~ O~ 3 
~3 = 0 ~ ? - - - - - - 3  

0~ 1 

and a wave  f u n c t i o n  renormalizat ion 

(3.4a) 

(3.4b) 

1 ~ 3 -  1 (3.5) 

The coupling with the external fields {h} leads also to two recursion 
relations for the two fields involved h x = h  ~, ha corresponding to sites of 
coordinat ion 1 and 3, respectively: 

oq(~3hi + h3) 
h' I = [~l(ctlat3_ 1)]1/2 (3.6a) 

h~ = 3hi + h3(~3~ 1 Jr 3ct I -- 1 ) 
[ct l(cq ct 3 - 1 )] 1/2 (3.6b) 

An analysis of the recursions (3.4a), (3.4b) will give information on the 
asymptot ic  behavior  of the end-to-end distance, 

( l~2 x L/2 N,> I N l / d  ' (3.7) 

where d ; =  1Iv i is the fractal dimension of the walk ( i - w )  or the chain 
( i =  c). Figure 3 shows the resulting phase diagram. There are two fixed 
points, W =  (ct I * =  1, ct* = 3) and C = (ct* = +oo,  ct~' = (1 + x / ~ ) / 2  corre- 
sponding to the walk and the chain, respectively. Indeed in the former case, 
from Eq. (2.19) one has that ct.~ ~ zx as ~n ~ 0 (both for blind and myopic  
ants), i.e., the two initial condition lines b: ct 3 = ~ + 2 for the blind ant and 
m: ct 3 = 3ct~ for the myopic  ant meet at the point W. Notice that the line 
~3=3ct2 is an invariant set under RG transformation (3.4a), (3.4b). In 
other words both the blind and the myopic  ant are controlled by the same 
fixed point W, in agreement  with a general result/lz~ The matrix (&t~/Sctj) 
at W has two eigenvalues 2,. = 6, 2, the largest of which gives the exponent  
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~ q  

3 W m 
. . . . . . . . . . . . . . . . . . . . .  3,( . . . . . . . . . . . . . . . . .  

2 

........................... L k:; ........ ! C  ........ C/\C c 

1 2 ) I ( 3  " U.3 
Fig. 3. Flow diagram for the case of the T-fractal: the fixed points W and C correspond to 
the random walk and ideal chain, respectively. The initial conditions m, b, and ic correspond 
to the myopic ant, the blind ant, and the ideal chain, respectively. 

d,,.= log 2,,/log 2 =2.585 of the end-to end distrance defined in (3.7) as 
follows from standard renormalization group arguments/22~ 

From the Alexander-Orbach relation ~231 we can also evaluate the 
spectral dimension ~l,.=2d/d,,=21og3/log6 describing the density of 
states, in the low-frequency limit, for the corresponding model of harmonic 
oscillators on the same structure. Using the parametrization x=c% and 
y =  ~3/c~, we find that the recursion equations (3.4a), (3.4b) become 

X ' = X  2 y 3 (3.8a) 

x 2 - y  -- 3 
Y'=Y x z -2y  (3.8b) 

from which the fixed point C, ( x * =  (! + .v/~)/2, y* =0) ,  evident. Linear- 
izing the above equations around C, one finds the two eigenvalues 
2 =  1 -  (3/x .2) and 2x*, corresponding to attractive and repulsive eigen- 
directions, respectively. C describes the critical behavior of the ideal chain. 
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To show this, one can construct  perturbatively around C a critical line L: 
~3 = c~3(cr by imposing the constraint  ~ = ~3(~'~) [i.e., it is invariant under 
the map  (3.4a), (3.4b)]. The first two terms are 

x , :  1 
~3 = x* + (2x*: - 1 ) el ~- o (3.9) 

Then numerically one can see that this line originates from W and is 
at tracted by C. The initial conditions line ic for the IC meets the critical 
line L when k ;  ~ = 2.536... and thus C controls its critical behavior. Indeed 
C controls the critical behavior  of all initial conditions corresponding to 
the blind ant in the presence of imperfect traps [i.e., 0 ~< q < 1 in Eq. (2.19)] 
since W does not have a domain  of attraction. The exponent  defined in 
(3.7) is thus d,. = log( 2x* )/log 2=2 .203  .... which is smaller than d,., i.e., 
v~. > v,.! We further notice that the second relevant eigenvalue 2,,, = 2 at W 
describes the crossover from RW to IC. We now turn to the calculation of 
the y exponent,  describing the critical behavior  of the susceptibility 

z ( k ) =  lim 1 k--k,. s ~ - ~ G ~ . y ( k )  ~ ( k , . - k )  -~' (3.10} 
x , y  

where S is the number  of sites of the T-fractal. 
In this case we have to calculate the highest eigenvalue 2h = 2 ''h of the 

matrix associated with the linear mapping  in Eqs. (3.6a), (3.6b) whose coef- 
ficients are calculated at the fixed point (a*, c~'). The y exponent  is given 
by the s tandard relation 122'241 

2)% - d 
7i di (3.11) 

where i =  w, c. At W, we get ~,,. = 1, in agreement  with the general argu- 
ment  given in the previous section, while at C, 

1og (5+2  x / ~ ) / 3  0.919... 
~ r  = _ _  - -  

log(1 + x / ~ )  

It is also easy to compute  the return probabil i ty (probabil i ty to 
return to the starting point Xo after N steps), which is equal to P,,o.,,o(N) 
appearing in the master  equat ion only if conservat ion of probabil i ty holds. 
F rom the renormalizat ion (3.5) one gets, in terms of the two-point  corre- 
lation function, 

~ 0 ~  3 - -  1 
Gxo.xo(~l, ~2) - - G x o . x o ( ~ ' t ,  a~) (3.12) 
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Close to the fixed point W, along the invariant line ~3 = 3~ = 3(1 + 09), one 
has that G,,o.,,o(otl,ot2)=Gxo.,,o(Og), due to Eq. (3.12), obeys the scaling 
relation 

G ~o. xo(~~ ) = 2G xo, ~o(6~ (3.1 3 ) 

and thus 

Gxo,xo(CO) ~ co3,,/2 1 (3.14) 

where d,,./2 = log 3/log 6 = d/d, ,  in agreement with the Alexander-Orbach 
(AO) relation. 123~ On the other hand, close to the other fixed point C, one 
finds 

k ~ k c  

G,,o.,,o(k) ~ (kc-k)" , - - '  (3.15) 

In this case, however, the return probability is 

Cxo.xo (N) 
e(0, N ) -  (3.16) 

Zx Cx0.,(N) 

due to the different normalization from the translationally invariant case. 
Since one expects that for large N 

CN--~  C,o.x(N)~N;'- '  K,71 (3.17) 
x 

then, using Eqs. (3.15), (3.17), we get for the exponent 3,. which defines the 
long-time behavior of the return probability that 3,./2 = v,. + ~, ,-  1, which 
is smaller then the value expected from the AO relation. This is not a sur- 
prise, since 3,. does not bear the same physical meaning (as 3,.) of spectral 
dimension for the low-frequency limit for the vibrational problem on the 
same structure. A similar mapping can, however, be implemented, leading, 
in the disordered case, to a Lifshits tail for the density of states of the 
transition matrix (see ref. 14). 

We can now summarize what we have learned from this simple 
example. 

(a) The problem of IC and RW are different when there is a non- 
translational-invariant environment, and they may belong to different 
universality classes (i.e., they have different critical exponents). 

(b) The ideal chain is controlled by a fixed point where the fugacity 
corresponding to steps visiting sites with lowest coordination (Zl = 1 in the 
T-fractal case) goes to zero. Indeed the corresponding parameter (a~ in the 
present case) iterates to infinity after few recursions, while the other 
remains finite. We interpret this result by saying that the main contribution 
to the correlation function Gx0., at the coarse-grained level comes from 
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chains which try to avoid sites at low coordination (z~ in the present case.) 
Furthermore,  the blind ant which dies with probability ( 1 - q ) ( z - z , , ) / z  
(q < 1) when visiting the site x has the same asymptotic behavior of the IC. 

(c) Whenever, as in this case, the sites with highest coordinat ion 
(z3 = 3 in the present case) form an infinite connected cluster, then the IC 
goes further with respect to the RW, i.e., v,. > v,.. 

3.2. The Blob-Link Model: Entropic Trapping 

We now ask what happens if sites with highest coordinat ion are forced 
to be not connected into an infinite cluster. The next example (the blob- 
link lattice) has exactly this feature (see Fig. 2). It was introduced t251 as 
deterministic model to mimic the behavior of the backbone incipient 
infinite cluster at the percolation threshold, and its fractal dimension is 
d = log 6/log/,  where 1 ( > 1 ) is some unspecified cale factor. Now there are 
still two types of coordinations, z x = 2 , 3 ,  and therefore only two 
parameter, cq = ct2, ct 3 and two external fields, h~ = h2, ]13, a r e  needed. The 
minimal set of fast variables is indicated again by the open circles. This will 
scale the structure by a factor / .  

The calculation for the recursion relation goes along the same line as 
the previous example. For  the ct's we get 

t 1 2 2 cc 2 ~a3 ct2(cc2 -- 2) + ct3(1 -- ct~) -- 2ct~ + 9ct2 (3.18a) 

ct~ = �89 ct] ct2(ct2ct 3 -- 5) + 2~3(1 -- cc~)+ 6cc 2 (3.18b) 

There is an ordinary fixed point W =  (et* = 2, ~* = 3), which obviously 
describes the behavior of the RW (both blind and myopic ant) as before. 
The asymptotic behavior of  the end-to-end distance is like Eq. (3.7) with 
d , . = l o g  27/log/,  which gives for the spectral dimension d , , = 2 d / d , , =  
2 log 6/log 27 = 1.087 .... 

However, it appears that the point C =  (ct* = +oo,  ct* = +2)  can be 
considered as a fixed point. Again there is a critical line L connecting W 
with C. As in the case of the T-fractal, C attracts the whole line L. The 
intersection of this line with the line of the initial condition c: cc 2 = ~3 = l /k  
occurs at k,7 ~ = 2.63522 .... 

The first few terms around C of the critical line L, to be derived 
perturbatively around C in the same way as the previous example, are 

5, (1) 
~3(cc2) = 2 + 1 + 4 ~--~, 2 + ~  _ _ (3.19) 
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Along this line, ~2 renormalized as 

c~i = ~ ~2 + ]-6 + o (3.20) 

We note, however, that C is not an ordinary fixed point as in the 
previous example, since it is infinitely repulsive. The standard method of 
linearizing the recursions around the fixed point then does not work. In 
Appendix A we describe a general method t7~ to deal with such a case, and 
show that it reduces to the standard one whenever the linearization is 
possible. 

Using the procedure described there, and in particular Eq. (A5) along 
with the critical line (3.19) and Eq. (3.20), one finds 

6' = (2~2)26 + o(~2, 62) (3.21) 

where 6 is a measure of the distance from the critical line L and we take 
6 = k , . -  k ,~ 1 initially. 

By interating n times the leading order in Eq. (3.21), one finds, using 
(3.20), 

61"~=  (2~2)  2" (5) / '  6 = ,,2 ,, 21 2 2 6  (3.22) 
0 

where 2 t = 5/2 and 22 = (8cr It is worth noticing that while the sublead- 
ing term 22 depends on the initial conditions, since ~2 is one of the two 
coordinates of the starting point close to the critical line L, the leading 
term is universal. 

Now we will consider the scaling of the correlation length 
~(0~2, ~3) ~" <R2> 112 for a starting point close to the critical line (3.19); after 
n recursions it becomes 

~ ( ~ 2 '  (X3(0~2) "1"- 6 )  = lnr , - In)~ (X3t~ 2 1-'[- 6 In) ) (3.23) 

If we are close to criticality, then we can assume 6 {"~- $,~ 1, and then 
(3.22) gives 

= [-!~ 1/2 (3.24) 
n L log21 J 

where subleading terms have been dropped. Use of (3.24) in (3.23) then 
results in an expression for ( (k)  - ~(cr 2 = 1/k, o~ 3 = I l k ) ,  i.e., 

~, , ,  k-kc f log  l Ilog(k~-k)1112] 
tKJ ~ exp L (-~~ i-ff J (3.25) 
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which, along with (2.14), yields 

, { f logN <R~>,/2 A,~ exp lOglLlo-~--5~)/ j (3.26) 

where l is the generic length scale. This is obviously slower than the usual 
power law [see Eq.(3.7)1.  In this sense we shall say that  the IC is 
localized! 

We now turn to the determinat ion of the entropic exponent  ~. The 
recursion equations for the fields h ,  = h2, h3 corresponding to z ,  = 2, 3 are 

where A = (c~ 3 - 1/•2) 2 - 4 .  
At the fixed point W, the highest eigenvalue of the linearized mapping  

(3.27a) and (3.27b) is 2 h - / Y " = 9  x/~, which defines Yh, for a general 
scaling factor L The 1,,,. is given by (3.11) along with d , .=  log 27/log I and 
d = log 6/log l; we find L,. = 1, as expected. 

The procedure for the other fixed point C is more  complex and is 
sketched in Appendix B. The result is 1,,. = 1. 

The calculation of the return probabil i ty goes along the same lines as 
in the previous section. Being more complex, it is also outlined in 
Appendix B. We find d,,. /2 = d/d,,. = log 6/log 27 and ~/,./2 = 0.5 < d,./2. 

3.3. The Sierpinski Gasket 

Another  interesting model where the sites with highest connectivity 
do not form an infinite connected cluster is the Sierpinski gasket with 
generator  3 x 3 (Fig. 2). 

The procedure is similar to that  of the previous sections and we will 
not give annoying details. Here z.,. = 4, 6. The recursions for the ct's are 

cq - 4A 
ct~ - - -  (3.28a) 

C + B  

ct6 - 6A 
ct6 - - -  (3.28b) 

C + B  
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where 

D 
A - ~6"~'~a - 1 ) [ ~ 6 R 4 ( 0 1 4  - -  1 ) - -  4 ~  4 - -  0C 6 - -  2] (3.29a) 

2 + ~  6 
B - (3.29b) 

[ ( ~ 4  - -  2)0% - -  6](1 + =4) 

4 + 2~4 + ~6 
C = (0~4 2 _ _  1 )[(0~ 4 - -  2)0C 6 - -  6] (3.29c) 

O = ~ 
(oc4 - 2 ) ~  - 6 (3.29d) 

Again for the RW we have a fixed W =  (a* = 4 ,  a * = 6 )  and an expo- 
nent d,o = log(90/7)/log 3. For  the IC instead an analysis similar to that of 
the previous section yields 1/k,. = 0.371 ... and, after some tedious algebra, 

(R~v) I/2 ~ (log N )  l ~  3 / log  2 (3.30) 

The fixed point giving such a behavior  is C =  (~* = + ~ ,  a* =0) .  For  
the entropic exponent  one finds y,,. = 1 and y,. = 3/2. 

In conclusion, on deterministic fractals, in the event that the sites of 
highest coordinat ion do not form an infinite network, there is a localization 
effect (i.e., a diffusion in the presence of traps is slower than a power law) 
due to the entropic trapping. This is essentially due to a combined effect of  
self-similarity and nonuniform coordination.  The fixed point in the R G  
recursions describing the IC is of a nons tandard  type since it is infinitely 
repulsive, leading to a non-power- law dependence in the end-to-end dis- 
tance. Nevertheless, there is a critical line L which is at tracted by C, 
describing the critical behavior  of a blind ant in the presence of imperfect 
traps residing a round the fractal. 

One may then ask what happens when we are in the presence of a true 
disordered system with statistical self-similarity such as the percolation 
cluster at the percolation threshold. 

We will tackle the problem numerically using exact enumerat ion 
techniques in the next section. 

4. STATISTICAL FRACTALS 

There have been many  investigations of the RW on a percolation 
cluster at criticality (see, e.g., ref. 26 and references therein). It is now 
accepted that  the end-to-end distance ( R ~ )  behaves as in Eq. (3.7) with 
d, .e(2.7,  2.8). Recently, however, 18'91 a similar investigation was carried 
out for the IC on the same structure, using exact enumerat ion techniques. 

8 2 2 / 7 5 / 3 4 - 2 2  
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Some of the results presented have appeared in refs. 8 and 9. Here we 
will discuss some new results and the details of the numerical technique. 
Because of the much improved statistics, some of the results given here 
supersede the estimates previously given. ~8~ All the numerical results 
presented in this section thus refer to the IC. 

4.1. Exact Enumera t ion  and Transfer  M a t r i x  

Let Wo be a chain starting from Xo ~ Z d. We are interested in the total 
number of chains originating from x o ending everywhere, after N steps, and 
belonging to a cluster ~' of occupied sites, i.e., 

Cx0(N; cg) = )-" Cxo,,(N) = ~ O(wo, cg) (4.1) 
x w 0 

where 

0(Wo, cg) = J ' l  if WoC~ (4.2) 10 otherwise 

The quenched average is defined as 

Cxo(N) = ~ ~(rg) Cxo(N; rg) (4.3) 
~g 

where ~(q() is the probability of occurrence of a given configuration if, 
which will be taken independent of ff in what follows. 

Similarly the (quenched) average end-to-end distance is 

Z.,00(wo, ~) R~(Wo) 
(RZu) = ~ ~(cg) (4.4) 

,~ Z,,.0 0(Wo, ~g) 

where R~(wo) is the end-to-end distance of the chain Wo. 
The disordered lattice we will consider is the incipient infinite percola- 

tion cluster r.g. On a square or cubic lattice a given site is open (or 
accessible) with probability p and closed (not available) with probability 
1 - p. A cluster cg is a subset of open sites: a site belongs to rg if it is an 
open site nearest of a site of cg. Then it is well known that a critical 
threshold p,. exists above which at least an infinite cluster is presentJ 2v) At 
p=p, .  the incipient infinite cluster (percolation cluster) is a statistical 
fractai. 128) 

It is important to notice that random walks in the presence of traps 
independently distributed on each site with probability 1 - p ,  with p 
arbitrary and not necessarily equal to p,., have been studied for a long 
time. 115"29'3~ There the starting point is taken randomly on a finite or 
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infinite cluster <g. Here we work at p = Pc and the starting point is taken 
on the infinite cluster. The sites not belonging to the infinite cluster act as 
a trapping environment. 

The algorithm we will use to generate infinite incipient clusters is 
known as breadth-first search and it is standard. 6 

If S(ff) is the number of total sites present in a cluster if, we can pass 
from the discrete time N to the discrete time N +  1 for a given configura- 
tion <g in Eq. (2.4) by applying on S(~) x S(~) matrix Wx.y(cg ) such that 

Wx ' ( ~ ) =  { 1 0 '  otherwise if I x - y l = l ;  x' Y~(g (4.5) 

so that Eq. (2.4) can be rewritten in term of a transfer matrix formalism: 

[ ~ ( N )  ) = WN(~)  [ ~u(0)) (4.6) 

where (x[ ~ ( N ) ) - = C  . . . .  (N) is a column vector defining the state of the 
system at the discrete time N. 

The total number of N-step chains with origin in Xo can then be 
obtained as a scalar product of the final state I~U(N)) and the state Iq~) 
[whose dimension is S(ff)] defined such that (x l  q s ) =  1 for all x. 

That is, 

Cxo(N; <g) = (q~[ ~g(N))= (q~[ w N [ ~ ( 0 ) )  (4.7) 

where (x l  ~ ( 0 ) ) =  fix~ represents the initial state. 
A similar procedure can be followed for the evaluation of the 

numerator of ( R ~ )  appearing in (4.4) with the substitution 4~ ~ ~ such 
that <xl~b> = I x - x o [  2. 

Clearly a naive application of Eq. (4.7) would bring an overflow in the 
numerical computation after few steps since the number of walks is expo- 
nentially increasing. In order to avoid this we introduce normalized vectors 
uj in the following way: 

II ~ 0  + 1)11 
Uo:  ~(0), W l u j )  : luj+ ~ ) c(j), c0') - II ~u0)ll (4.8) 

Then Eq. (4.7) becomes 

N 

C,,o(N; c.g) = 17 ][ c(j)l] ( r  uN ) 
j = l  

(4.9) 

6 For a general reference see, e.g., Kirkpatrick. ~j~j 
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or 

N 

log Cxo(N; 5 )  = log(Ol  uN) + ~ log II ~v(J)H (4.10) 
j = l  

The overflow is thus avoided by working only with logarithms. The 
final result is exponentialized before taking the average over the disorder. 

The algorithm for the calculation of the return probability discussed in 
the next section works in a similar way. 

4 . 2 .  E n d - t o - E n d  D i s t a n c e  a n d  R e t u r n  P r o b a b i l i t y  

Using the numerical method described in the previous section, we 
performed an extensive numerical ana lys i sof  Cx0(N; 5 )  and ( R  2 )  in two- 
and three-dimensional percolating clusters. Figure 4 shows, for the same 
configuration in d = 2 and the same starting point, the comparison between 
RW and IC, making apparent  the difference between the two types of diffu- 
sion. The behavior of the IC is not a smooth power law as in the case of 
the random walk (both blind and myopic ants)! Instead, an irregular curve 
with large plateaus followed by jumps is obtained. This is a peculiar result 
of the IC and it is an entropic effect similar to the one found for deter- 
ministic fractals studied in Section 3. The chain does not visit uniformly the 

Fig. 4. 
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Fig. 5. 
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A log-log plot for the end-to-end distance R2(N)=-(R~,) for d=2 (O) and d=3 
(A). The solid and dashed lines have slopes 1.16 and 1.04, respectively. 

s tructure,  but  it tries to stay in regions with high connectivity.  When  the 
average over  the d isorder  is taken,  the usual power  law (3.7) is recovered. 
The average is taken only on the infinite clusters and was carried out  over 
six different sets of data,  each of 1000 configurations.  

In Fig. 5 we show ( R ~ )  versus N, is a log - log  plot,  for both the 
two- and three-dimensional  cases. Our  best est imate of the exponents  
is v,. = 0.58 _+ 0.03 and vc = 0.52_+ 0.03 in d =  2 and 3, respectively. These 
values reflect much improved  statistics compared  with our  previous 
est imates  in ref. 8. This is derived by averaging the exponents  coming 
from best fit, Pad6 analysis, and s tandard  ex t rapola t ing  techniques. All 
exponents  calculated in this section are summar ized  in Tables I and II. The 
same results are obta ined if the quenched averages are taken by averaging 

Table  I. S u m m a r y  of  the  Exponents  v, 6, and d/2,  O b t a i n e d  in the  Text"  

d v 6 d/2 

2 ().58 + 0.03 1.60 + 0.03 0.94 + 0.06 
3 0.52 -I- 0.03 1.66 +__ 0.03 1.05 __+ 0.05 

a The exponent v refers to the average value of the three methods mentioned in the text, while 
both 6 and ,~/2 were obtained by best fit. 
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Table II. Summary  of  the  Exponents  qJ and X Defined in the Text"  

d ~b(D) ~b[I) ;dD) X(I) 

2 0.80 4- 0.01 0.80 + 0.01 0.68 + 0.01 0.66 4- 0.01 
3 0.85 4- 0.01 0.85 + 0.02 0.75 + 0.01 0.74 + 0.01 

"The  labels (D) and (I) indicate direct evaluation and from the log-normal distribution, 
respectively. 

over many  different starting points Xo on a fixed configuration cr This was 
expected since the same cluster looks different when seen from different 
points. 

For  the ants, i.e., RW, on the same structure it is already known that  
v,,.~ 0.37 and 0.28 in d =  2 and 3, respectively. Thus it is remarkable  that  
v,. > v,,. as we found in the exactly solvable model on the T-fractal. In other 
words, diffusion of the surviving ants in the presence of traps is faster 
(superdiffusion) than standard diffusion of the blind and myopic  ants. 

It is intriguing that in d =  2, v,. is greater than its counterpar t  in the 
translat ional- invariant  lattice, where v = 1/2 (see Section 3). 

Let us now investigate the scaling form of the distribution P(R, N) of 
the end-to-end distance R = x -  Xo. This is defined as [see also Eq. (3.16)] 

P,,o x (N' cr 
P(R, N) = ~, ~(c6') ~ x  P',,o.,,( N, ~) (4.11 ) 

where P,,,,,,(N, c c.g) = C~0.x(N, Cg)/zN according to Eq. (2.6a) and it coincides 
with P,,o.,,(N) only for RW due to probabil i ty conservation,  Eq. (2.21). 
The exact form of this function is still disputed in the r andom walk case, 
al though there are heuristic arguments,  supported by numerical simula- 
tions, predicting a stretched-exponential  type of decay with an exponent  
6 = ( 1 -  v,)-t.~t9~ This is the same scaling law which was shown by Fisher 
to hold in the case on the self-avoiding walk (with no disorder)J  ~s~ 

If scale invariance holds, one expects that 

1 F R (4.12) 

where F(x) is a universal function such that F(x)~ e x p ( - x  ~) for x >> 1 and 
F(x)~x  ~ for x ~ 0 .  Since the support  of the measure has a fractal of 
dimension d, one has that 

f daR p(R) P(R, N) = Saf  dx xaF(x) = 1 (4.13) 
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where p(R)=R a-a (d=  91/48 ~1.9 and ~2.5 for d = 2  and 3, respec- 
tively c28j) and S d = 2rtd/2/F( d/2 ). 

Figure 6 is a plot of RPu(R)/Sd=xaF(x) [ x =R/N  "c, where PN(R)is 
the probability obtained by P(R, N) by separating off the angular part].  
The data shown are for d = 2  and N=400 ,  800, 1200, 1600. Within the 
statistical errors the collapse of the data is satisfactory for the value 
v,.=0.58, thus supporting the above scaling form. A best fit gives 
6 = 1.60_ 0.11 and 6 = 1.67_ 0.03 for d =  2 and 3, respectively. These 
values are not consistent with the scaling law 6 = ( 1 -  v,.)-~, which would 
give 6 = 2.38 + 0.01 and ,5 = 2.08 + 0.01 for d = 2 and 3, respectively, using 
our aforementioned estimates for v,.. We also find 0 = - 0 . 2 9  + 0.03 and 
0 = - 0 . 5 5 _  0.04 for d =  2 and 3, respectively. 

A value of 6 which is consistent with our findings can be obtained by 
looking at the dimensionless moments: 

Irlq(N)=(<RqN>)t/q--l-'l/q(q"b~"bO)l~l-l/q((d-t-O)/(~) (4 .14)  

<R,v> r((1 + d +  0)/6) 

where the second equality has been obtained by assuming the form (4.12) 
with F(x)oc x~ By computing directly the higher moments 
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Fig. 6. Plot of the universal function RP,v(R)/Sd=xaF(x) versus the dimensionless quantity 
R/N" for d=2 .  We find F(x)=Ax~ The data shown are for N=400  (�9 
N=800  (A),  N =  1200 (+) ,  N =  1600 ( r  The data shown are an average over five points. 
The solid line is the best fit result which gives 6 = 1.60+0.03 and 0 = - 0 . 2 9  +0.03. The 
collapsing of the data in a single curve supports the above scaling form. The value chosen for 
v is 0.58. 
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(q=0.5,  1.5, 2) and comparing with Eq. (4.14), we find for d = 2  the best 
match for h ~ 1.60 and 0 ~ -0.25, in agreement with the previous estimate. 
The same type of agreement is also obtained for d =  3. 

We have also considered a possible multifractal behavior for m q ( N )  

N "(q)-v(l). With a satisfactory degree of accuracy we find v(q)=v(1) for 
q=0.5,  1.5, 2, in agreement with the prediction from the scaling form 
(4.12). 

The return probability is defined, upon quenched average, as 

P(0, N) = ~ ~ ( ~ )  ~ "~176 
2-x P,o.x( N, cg) (4.15) 

and is expected, according to Eq. (4.12), in the R/N"- ,  0 limit, to behave 
as  

P(O, N) N~ I N_~,./2 (4.16) 

with 

$, = 2(d+ 0) v,. (4.17) 

which can be regarded as a generalization of the usual Alexander-Orbach 
relation, 123~ which is recovered for 0 = 0. It is worth noticing that this is the 
same situation as the T-fractal studied in Section 3.1, where the diffusion 
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was also faster for the IC than for the RW. We recall that d is an intrinsic 
quantity,  in contrast  to d, 0, and d c = 1Iv c, in the sense that  it is independ- 
ent of the embedding space. It depends only on the topology ~,  i.e., the 
assignment of the neighbors of any site of c~.132~ The values obtained by a 
direct computa t ion  are de/2 = 0.94 _ 0.06 .for d =  2 and d,./2 = 1.05 _ 0.05 
for d = 3, consistent with Eq. (4.17) and previously computed  values, which 
would give ( d +  0) v,. = 0.94 _+ 002 and 1.02 + 0.03 for d =  2, 3, respectively 
(see Fig~ 7). This has also an interesting physical interpretation. It is well 
known (3"4) that  for the self-.avoiding walk (and no disorder),  0 - -  (7 - 1)/v. 
The fact that  0 > 0 means that  it is difficult for a walk to return to the 
origin. For  the ideal chain instead 0 < 0  and the return is more likely, 
which is consistent with the entropic t rapping occurring for the single 
realization as discussed at the beginning of this subsection. For  the r andom 
walk, on the other hand, 0 =  0 ~231 and the return is unbiased. 

4.3. Distr ibution of the Number  of Chains 

We now turn to the interesting analysis of the entropic behavior. As 
ment ioned in Section 4.1, the tadpole configuration assumed by the head of 
the chain is essentially an entropic effect due to the disorder. It is then 
natural  to study the distribution of the number  of chains, which in the 
absence of disorder would be a delta function centered in z N (z is the coor- 
dination number  of the lattice). On the basis that C - C x 0 ( N ,  ~ )  comes 
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Fig. 8. Calculated distribution P(IogC) for N=400 (O), N=800  (O),  B=I200 (+), 
N= 1600 (O), in the case d = 2 .  The solid lines are the best fit results derived from Eq. (4.18). 
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from a product of random matrices, one might expect the distribution to 
be log-normal. The numerical evaluation is shown in Fig. 8 for N =  400, 
800, 1200, 1600 in the case d = 2 ,  and it appears to be consistent with the 
prediction 

1 [ /log 
P(C, N) = C(2~a2)1/2 exp 2a 2 j (4.18) 

where the mean 2u=log  Cxo(N, 5) and the variance a~v = (log Cx0(N, f f ) )~ -  
(log Cxo(N, c.g))2 both depend on N. The solid line represents the best fit. 
Consistently, we can plot the results for different N in terms of the 
scaled variables Ay=( log  C-2u)/ (2a~)  j/2 and of the function p(zly)= 
(2na2N) L/2 P(log C), where P(log C) = CP(C, N). The collapsing of the data 
to a single universal curve is rather good (see Fig. 9), thus supporting the 
above log-normal form. 

In the large-N limit the mean scales like 2 u = N l o g  p - ~ N  ~, with 
~O(I) = 0.80 _+ 0.01 and 0.85 _+ 0.02 for d = 2, 3, respectively. Instead for the 
variance we find a best fit of the form t r ~  N 2z with X(I)= 0.66_+ 0.01 
and 0.74_+0.01 for d =  2, 3, respectively. The index I indicates that the 
exponents have been derived from the shape of the log-normal distribution, 
to be distinguished from the case when a more direct evaluation (i.e., from 
the moments) is performed. 
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Fig. 9. Plot of the distribution p(~Jy)= P(Iog C)(2na~) m in terms of the scaled variable 
ziy=(logC-)tu)/(2a~) 1:2. The values are N = 4 0 0  (O),  N = 8 0 0  (A) ,  N = 1 2 0 0  (+ ) ,  
N =  1600 (~ ) .  
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The extremely important feature to be noticed is that a~v~> 2N (for 
large N), which would not happen in the absence of disorder as a central 
limit theorem. This does not create particular problems for the logarithmic 
moments like 

Lq(N) - (log Cxo(N, cg)) ut/q (4.19) 

In particular, then, Lo(N)=2N, whose direct numerical evaluation 
gives a value which is in perfect agreement with the above assumption, 
namely ~b(D) = 0.80 +_ 0.01 and 0.85 _+ 0.01, for d =  2, 3, respectively. The 
other parameters were found compatible as well. Indeed (for d = 2 )  we 
found /~ = 3.76 _+ 0.01 and ~ = 0.52 _+ 0.01 from the log-normal distribution 
and/a = 3.76 +_ 0.02 and c~ = 0.52 _+ 0.01 directly. Similar agreement holds for 
d =  3. Furthermore, a direct evaluation of a~v gives z ( D ) =  0.68 _+ 0.01 and 
0.75 _ 0.01 in the cases d = 2, 3, respectively. 

We also computed the fourth and sixth cumulants for the distribution 
P(log C) and found them to vanish, as they should for a Gaussian distribu- 
tion. 

Note that this behavior for the logarithmic moment is of the type 
defined in Eq. (2.26), which predicts an essential singularity for the suscep- 
tibility [Eq. (2.27)] upon exponentiation. 

However, a log-normal distribution would give for the moments 
Zq(N) =- ~ ,  qYj~/q a behavior 

iaNq) Zq(N) ---- exp(). N -I- i 2 (4.20) 

2 ~ 2u for large N this is inconsistent with the In view of the fact that a N 
bounds 1 ~< Zu(N ) <~ z u. When aN '~ AN '~ a2U we will speak of weak lack of 
self-averaging to be distinguished from the standard lack of self-averaging.t33~ 

The source of the problem for the log-normal distribution is well 
known to come from the tail of the distribution itself, which fails to drop 
to zero sufficiently fast. As a consequence the knowledge of all the moments 
does not define the distribution univocally, c341 

This apparent paradox is solved by assuming a cutoff ~ z  N in the 
distribution, i.e., 

Cqo(N, c~) = fl dC cqP(C, N) dC P(C, N) (4.21) 

It is easily seen that this has no effect on the asymptotic behavior of 
the logarithmic moments in Eq. (4.19). 
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In order to perform the integral, it is useful to introduce an auxiliary 
variable through an Hubbard-Stratonovitch type of transformation: 

exp - ---v2 a'N] ---- \2n]-- f d~exp - ~a-u~-+i~y (4.22) 

The result is, dropping subdominant terms, 

Cxo(N, ~)q=exp(2Nq+qZa~/2) Q(aN[q-- 2N/a~]) (4.23) 

where '~-u = N log z -  2N and where we introduced the error function 

Q(x)-  (2n)1/2 ,- dq exp - ~ q-" (4.24) 

Using the asymptotic expansion for the above error function, we then get 
the final result: 

1 
' + '  

~log N----T-+O(N2'q'-z'~I 
q aN / )  

(4.25) 

A numerical check of this behavior was found to be extremely hard to 
implement. The basic reason for this comes again from the lack of self- 
averaging. In order words, the fluctuations for the values of Cxo(N, c~) are 
larger than the mean values. As a result the average over values of the 
variable Cxo(N, ~) fails to include events which are far from the most 
probable one, which is represented by the logarithmic moment. 

This possibility is well known to occur rather frequently in presence of 
disorder. 135~ 

It is interesting to notice that, if we identify z appearing in Eq. (4.21) 
with the coordination number of the lattice, then a scaling law similar 
to (4.25) has been proposed 1'5~ for the survival probability, Ps(N)= 
Cxo(N, cg)/_N of the IC when sites are open with probability p and closed 
with probability 1 - p .  In d dimensions it was found that asymptoti- 
callyl ~o, 15.3o~ 

Ps(N) ~ exp[ - [log p'-/(d+ 2)N,+(d+ 2)] (4.26) 

However, at variance with our case, where the chain is contained in 
the infinite cluster at the percolation threshold p,., here the chain can live 
on finite clusters of occupied sites (in fact it is the only possibility when 
p<p,,). 
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The possibility of scaling behavior like (4.26) at p < p,. is characteristic 
of this problem of random paths where no excluded-volume effect is present. 
For ordiniary spin systems in a diluted lattice with short-range interaction 
or self-avoiding walks, no critical behavior can be observed below p~. 

If we restrict the average on the infinite clusters, then, to the best of 
our knowledge, there are no rigorous results of the type (4.26). An exten- 
sion of the heuristic argument similar to the one presented in refs. 30 and 
5 would lead to the result 

P s( N )  ~ exp [ - A N  d''/*d'" + ii] (4.27) 

where A is a constant. Note that, according to the results of Section 4.2, the 
exponent is different from the one obtained from the substitution d--* d. 

Comparison of Eq. (4.25) with Eq. (4.27) yields 

dr,. + 2 
X (4.28) 

2dr,. + 2 

This conjecture would give, using our values for v,., X = 0.74 + 0.02 and 
0.72 + 0.01 for d =  2, 3, respectively. Although these values are very close to 
our finding, particularly for the three-dimensional case, the dependence on 
the dimensionality does not seen to be correct. This should not be sur- 
prisingly, however: besides the constraint of the fractal environment, it 
appears that the above argument cannot catch the essential feature of the 
strongly correlated disorder related to the choice of averaging only on the 
incipient infinite cluster. 

As in the case of the deterministic fractals it is interesting to ask what 
is the universality class of the intermediate case described by Eq. (2.16) 
with q e (0, 1) (the imperfect blind ant). We checked that as soon as q <1 
the universality class is the one of the ideal chain. It is also possible to 
derive a simple argument relating the number of steps necessary to exit 
from the transient region with the value of q. 

5.  C O N C L U S I O N S  

In this paper we presented an investigation of the problem of static 
random paths (ideal chain) both on deterministic and statistical fractals 
using analytical (renormalization group) and numerical (transfer matrix) 
techniques. On one hand, this model could be useful in the description of 
optical and/or magnetic excitations in the presence of fixed centers where 
the excitations decay (e.g., by fluorescence). On the other hand, the motion 
of single polymers in porous media can also be described in this way. 
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Due to the equivalence between kinetic and static random paths (i.e., 
random walks) on translationally invariant (e.g., hypercubic) lattices, this 
equivalence was tacitly assumed to hold in any environment. We find 
instead that the universality class of this model is different on non-transla- 
tionally-invariant lattices such as self-similar structures. 

This model is also an interesting limiting case of the self-avoiding walk 
on strongly correlated disordered structures, when the self-avoidcance is 
negligible. 

On the methodological  standpoint,  the RG analysis done here in the 
case of the ideal chain is nonstandard due to the appearance of singularities 
in the recursion relations associated to a new types of fixed points. 7 We 
have also found that the ideal chain shows unexpected novel behavior both 
in the deterministic and in statistical fractals. 

In particular, the end-to-end distance behavior ranges from very slow 
(e.g., logarithmic) diffusion to superdiffusion. The entropic behavior also 
appears to be different in the presence of disorder, depending on whether 
the average (first moment)  or the most probable (logarithmic moment)  is 
considered for the number  of chains. The distribution of the number  of 
N-step chains is log-normal with a variance growing with N faster than the 
average, leading to a non-self-averaging behavior. 

It would be extremely interesting to carry out a similar investigation 
in the presence of self-avoidance, whose critical properties are still not  fully 
understood. 

A P P E N D I X A .  GENERAL PROCEDURE FOR SINGULAR 
RECURSIONS 

Let us consider the 2D map 

x'  = Rx(x,  y)  (A1) 

y' = Ry(x,  y )  

For simplicity we assume that this has a fixed point at O = { x * =  0, 
y* = 0 }  in the sense that either it satisfies identically (A1) or is a singular 
point but there is a (critical) invariant line L which is attracted by it. In the 
latter case the standard procedure of iinearizing around it to extract 
asymptotic behaviors does not work. We now want to describe an alter- 
native procedure and show that this is equivalent to the usual case in the 
event that the linearization is possible. 

7 Recently the same type of singularity has been found to occur for diffusion in ramified 
structures in the presence of an external bias. ~3~ 
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Let L: y = y(x)  be such that 

(i) y(x)  ...... ", y* 

( i i )  x '  = R,.(x, y(x)) 

(iii) y ' =  Ry(x, y(x))  = y(x')  

(A2) 

The condition (iii) simply means that the line L is invariant under the 
recursions (AI). 

Let us start from a point/5 = (2, y(Y,) + 6), with 6 ,~ 1, which is slightly 
above the critical line y = y ( x ) .  Under the recursions (A1), the point is 
driven into /5 '= (2 ' , y ( f f ' )+6 ' ) .  We then can easily find the relation 
between 6' and 6, i.e., how the point is driven away from the critical line, 
due to the repulsive eigenvalue. At the leading order 

0 I' = I'�91 2 ) 
.0' - R,.(.~, y(.~) + ~) = R.,.(.~, y(.rc)) + ~ R,.(.~, y) 

and 

y(2')  = y(R.,.(ff, y(2) + 6)) 

find 

6 (A3) 

dy(x) ~ O R~(ff, y) ,.=.v(.e 6 (A4) = y[R.~(.~, y(2))]  + 
- ..= R.~c%,,c~)) Oy 

Therefore, since 6 ' = 9 ' - y ( 2 ' ) ,  using condition (ii) of Eq. (A2), we 

6' = A6 + 0 ( 6  2) ( a s )  

where 

It? d - -  R.~( Yc, y ] A =  ~ R,.(~,),) --;-y(x) . . . .  ..~ (A6) 

We want to show that this coincides with the maximum eigenvalue in the 
standard case where its value is finite. 

The scaling fields for this problem are 

UM(x, y) = a.,.x + a.,. y + o(x 2, y2, xy) 
(A7) 

u,,(x, y) = b,.x + by y + o(x 2, y2, xy)  

where uM, u,, correspond to the maximum and minimum eigenvalues 2 M, 
2,,, respectively. If M is the linearizing matrix of the recursions (A1) 
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around the fixed point (i.e., M~x=Ox' /Ox,  Mx.y=Ox' /Oy,  etc.), then it is 
clear that a,. and a_,. (bx and b,.) are the components  of the left eigenvector 
corresponding to 2M(2,,,). This thus gives for the max imum eigenvalue 

a,- My.,. (A8) - - =  

ay 2M - Mxx 

The critical line can be found by imposing U M ( x , y ) = O  which at the 
leading order gives 

ax y (x )  = - - -  x (A9) 
a y  

Thus, evaluation of the terms present in (A6) lead to 

My.,.Mxy (A10) 
A = M.,:,. + (2M -- Mxs) 

which coincides with 2M, as is easy to verify. 

APPENDIX B. CALCULATION OF THE EXPONENTS y A N D L ~  
FOR THE BLOB-LINK MODEL 

In this appendix we first describe the procedure to obtain the entropic 
exponent  for the blob-link model starting from the recursions (3.27a) and 
(3.27b). It is convenient to redefine the fields as br = h, / , , /~ ,  (r = 2, 3). If we 
assume that we are on the critical line L, and thus use the leading orders 
in Eqs. (3.19) and (3.20) in Eqs. (3.27a) and (3.27b), then we have for the 
redefined fields b, after n iterations, 

b ~ ) =  A"2r 

b(,,) ,0,,~,,2/2/~ 
3 = ~ "~ 1 t ' 3  

(B1) 

where A, B are constants and ,i.~ was defined before as 2~ = 5/2. 
The scaling of the singular par t  of the free energy per site of the 

Gaussian model (2.7) after n iterations is 

l-,,ar~o~,,,~ ct{3,,,, hl,,i b,,,,) f (~2 ,  0t3, b2, b3 )=  . , ,  2 , ~2 , 3 (B2) 

Since the susceptibility Z is given by 82f(cq, ~3, b, b)/Ob 2, from (B2), 
(3.27a) and (3.27b) one derives that 

Z(6, ct_,) ~Z- ~ fi - ~ + subleading terms (B3) 

from which Yc = 1, since 6 = k , . - k .  
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We now consider the calculation of the return probability. The renor- 
malization of the two-point correlation function gives 

Gx0.x0(~ 2, cz3)= D(~,_, ~3) Gxo.xo(Cx'_,, c<~) (B4) 

where 

O(~_,, c<3) = �89 I-(c<2 ~ 3 - 1 )2 _ 4 ~ ]  (B5) 

follows from the rescaling of the field [see Eq. (3.2)]. 
At the fixed point W this gives (for the random walk) 

a',,./2 = log 6/log 27, as expected. 
For the other fixed point, we need to use Eqs. (3.19) and (3.20). Upon 

iteration and making use of Eq. (3.22), we get, using (B4) close to the 
critical line, 

C(k) k 7,k~ (k , . -  k)-, /2 (B6) 

This, at the leading order, yields 

P(O, N) ~ N -~'/2 (B7) 

with d,.12 = 1/2 since 7,-= 1. 

A P P E N D I X C .  PERIODIC LATTICE W I T H  N O N U N I F O R M  
C O O R D I N A T I O N  N U M B E R  

Here we want to show in a simple example that the nonuniform coor- 
dination number does not lead to new physics in a periodic lattice. The 
basic idea is based on the following. In the notations of Section 2 we 
consider the Fourier transform of the P,,o.,,(N), namely 

J~(q, N ) = ~  e - iq ' lx-  x~ Pxo.x(N) (CI) 
x 

Similarly, let G(q, o9) be the Fourier transform of the generating func- 
tion (2.2). Then it is easy to see that the end-to-end dist~ince 

2 ~  ( R ~ )  = - V , P ( q ,  N)lq=o (C2) 

has as a generating function: 

+ oc  1 

-V~(~(q, og)l.=0-- ~ 2.(1+o9)N+ , (R~ >'~o9-(2''+') (C3) 
N = O  

822/75/3-4-23 



704 Giacomet t i  e t  al.  
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Fig. 10. Example  of the lattice with basis considered in Appendix  C. The sites x e E,  ~ { �9 } 
have coordinat ion numbers  z x = 8, while the sites x E { �9 } have coordina t ion  numbers  z x = 4. 

for o~--. 0. This means that if the propagator  (~(q, ~o) in the continuous 
limit a--* 0 has the form 

1 
(~(q, o9)~ (C4) 

Ao9 + Bq 2 

with A, B constants (depending on the lattice), then from (C3) we get 
v,. = 1/2, i.e., normal  diffusion. 

A simple two-dimensional example is depicted in Fig. 10. We add one 
cr r162 more index ct to the probability Pxo.x(N) such that x belongs to El =- { O } 

and 0~ = 0 if the ant is at x, whereas ~t = 1 if the ant is at the center of  the 
square whose lower left corner is x. We allow jumps between sites at 
distance a and a/x/~; then we have two different coordinations,  namely 
zx = 8, 4. The solution of  the master equation (2.1) is readily obtained by 
Fourier serie~ (C1) where (~o.~(q, o~) is now a 2 x 2 system. Then it is easy 
to see that equations of the form (C4) are found for (~=0.=(q, co) V~o, ct, thus 
leading to normal diffusion for both ants. 

For  the ideal chain, whose critical fugacity is not known a priori, it is 
also easy to see that the critical value k,. which makes the propagator  
massless is k,.=(x/rS-1)/8,  which belongs to the interval [1/8, 1/4] as 
expected and again v c = 1/2. 
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